The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is
$\left( {1,2} \right) \cup \left( {2,\infty } \right)$
$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {3,\infty } \right)$
$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$
$\left( { - 2, - 1} \right) \cup \left( { - 1,0} \right) \cup \left( {2,\infty } \right)$
Let $f(x)=2 x^{2}-x-1$ and $S =\{n \in Z :|f(n)| \leq 800\}$ . Then value of $\sum_{n \in S} f(n)$ is . . . . .
The range of the function,
$\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$
$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ is :
If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to
solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
The function $f$ satisfies the functional equation $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ for all real $x \ne 1$. The value of $f(7)$ is